Jumat, 15 Oktober 2010

Rumus Persamaan Kuadrat

Rumus kuadrat dikenal pula dengan nama 'rumus abc karena digunakan untuk menghitung akar-akar persamaan kuadrat yang tergantung dari nilai-nilai a, b dan c suatu persamaan kuadrat. Rumus yang dimaksud memiliki bentuk
x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Rumus ini digunakan untuk mencari akar-akar persamaan kuadrat apabila dinyatakan bahwa
y = 0 \,\!.
Dari rumus tersebut akan diperoleh akar-akar persamaan, sehingga persamaan semula dalam bentuk
y = ax^2 + bx + c \,\!
dapat dituliskan menjadi
y = a (x - x_1) (x - x_2) \,\!.
Dari persamaan terakhir ini dapat pula dituliskan dua hubungan yang telah umum dikenal, yaitu
x_1 + x_2 = -\frac{b}{a} \,\!
dan
x_1 \cdot x_2 = \frac{c}{a} \,\!.

DISKRIMINAN

Dalam rumus kuadrat di atas, terdapat istilah yang berada dalam tanda akar:
 b^2 - 4ac,\,\!
yang disebut sebagai diskriminan atau juga sering disebut determinan suatu persamaan kuadrat. Kadang dituliskan sebagai D.
Suatu persamaan kuadrat dengan koefisien-koefisien riil dapat memiliki hanya sebuah akar atau dua buah akar yang berbeda, di mana akar-akar yang dimaksud dapat berbentuk bilangan riil atau kompleks. Dalam hal ini dikriminan menentukan jumlah dan sifat dari akar-akar persamaan kuadrat. Terdapat tiga kasus yang mungkin:
  • Jika diskriminan bernilai nol, terdapat eksak satu akar, dan akar yang dimaksud merupakan bilangan riil. Hal ini kadang disebut sebagai akar ganda, di mana nilainya adalah:
x = -\frac{b}{2a}.\,\!
  • Jika diskriminan bernilai negatif, tidak terdapat akar riil. Sebagai gantinya, terdapat dua buah akar kompleks (tidak-real), yang satu sama lain merupakan konjugat kompleks:
x_- = \frac{-b}{2a} - i \left ( \frac{\sqrt {4ac - b^2}}{2a} \right )


Jadi akar-akar akan berbeda, jika dan hanya jika diskriminan bernilai tidak sama dengan nol, dan akar-akar akan bersifat riil, jika dan hanya jika diskriminan bernilai tidak negatif.

Tidak ada komentar:

Posting Komentar